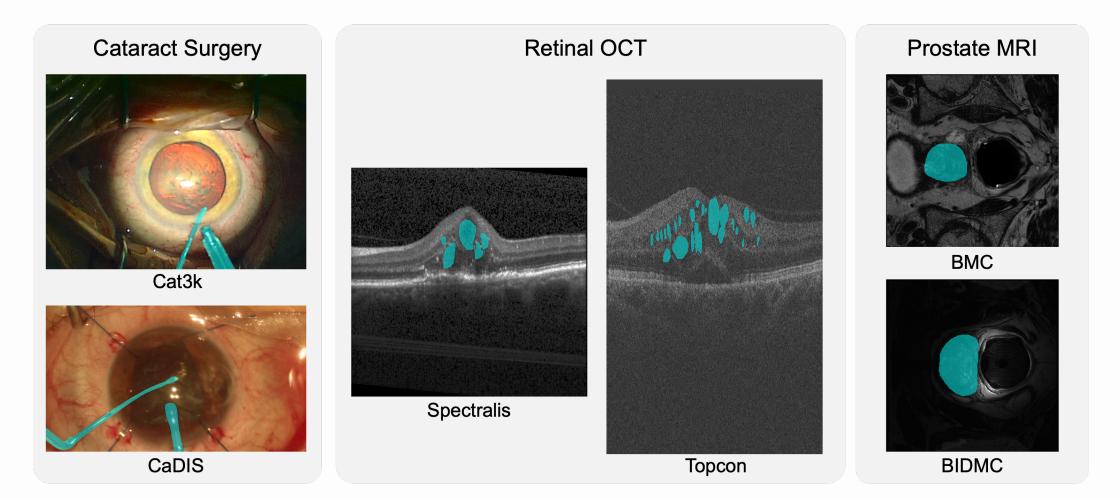
Domain Adaptation for Medical Image Segmentation using Transformation-Invariant Self-Training

Negin Ghamsarian¹, Javier Gamazo-Tejero¹, Pablo Márquez-Neila¹, Sebastian Wolf², Martin Zinkernagel², Klaus Schoeffmann³, Raphael Sznitman¹ ¹ARTORG Center for Biomedical Engineering Research, Universität Bern, Bern, Switzerland ²Department of Ophthalmology, Inselspital, Bern, Switzerland ³Institute of Information Technology, Universität Klagenfurt, Klagenfurt, Austria

UNIVERSITÄT BERN

Abstract

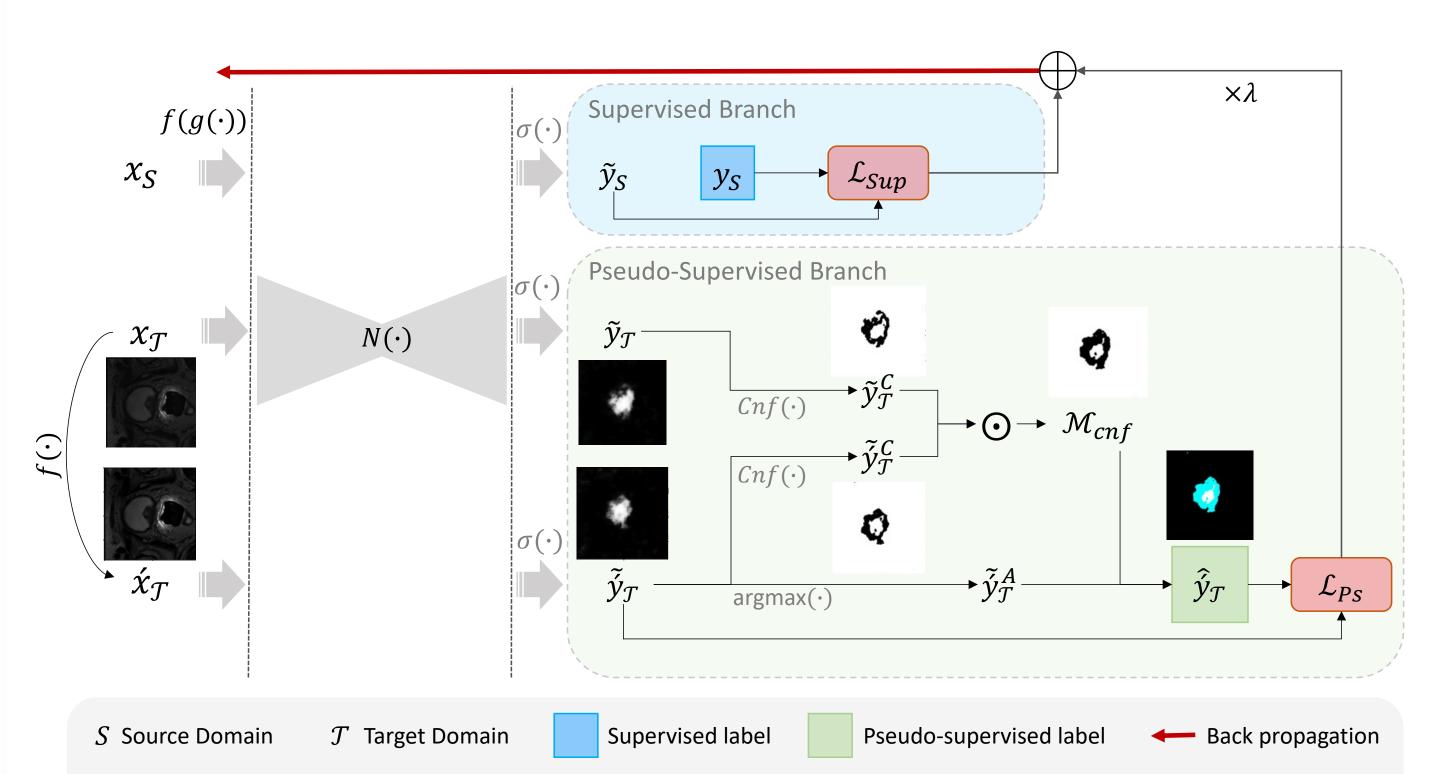
- Leveraging unlabelled data is crucial for addressing distribution gaps in diverse image Example images from the three adopted cross-device-and-center datasets: datasets.
- Self-training techniques using pseudo-labels are highly effective for semi-supervised domain adaptation.
- Unreliable pseudo labels can hinder self-training's performance, especially in the case of significant distribution gaps.
- Identifying uncertain pseudo labels through image transformation variance can improve ground truth approximations.
- The proposed "transformation-invariant self-training (TI-ST)" filters out unreliable



pseudo-labels, enhancing domain adaptation for medical image segmentation.

Methodology

Overview of the proposed semi-supervised domain adaptation framework based on transformation-invariant self-training (Ignored pseudo-labels during unsupervised loss computation are shown in turquoise):



Quantitative Comparisons

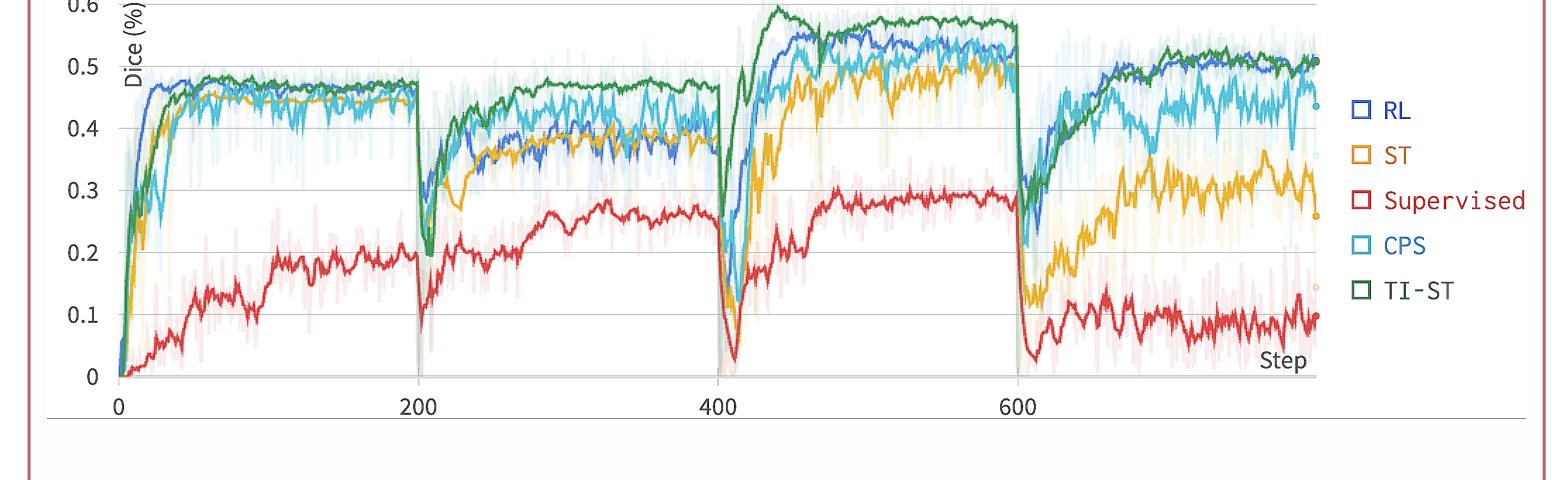
Quantitative comparisons in Dice score (%) among the proposed (TI-ST) and alternative methods for DeepLabV3+ (DLV3+) and scSENet and the three datasets (Relative Dice computed over the Supervised baseline. The best results are shown in green):

Modality	Cataract Surgery		OCT		MRI		Avg. Rel.
Network	DLV3+	scSENet	DLV3+	scSENet	DLV3+	scSENet	11.8. 1001
Supervised	15.42	37.67	22.87	24.08	52.39	65.93	N/A
Π Model	27.55	35.56	1.12	0.00	10.00	6.87	-22.88
TE	33.10	42.32	42.13	39.86	63.41	67.25	11.62
Mean Teacher	11.06	39.54	19.11	4.70	64.82	66.87	-2.04
RL	34.40	45.13	48.73	47.70	60.79	70.20	14.77
CPS	36.24	39.40	47.31	14.71	76.00	68.80	10.68
ST	34.34	41.10	36.84	33.01	68.63	71.97	11.26
MCF	26.97	40.19	40.12	36.52	54.17	50.23	7.46
TI-ST	37.69	45.31	50.93	40.87	66.56	74.07	16.18
	(+22.27)	(+7.46)	(+28.06)	(+16.79)	(+14.17)	(+8.14)	

Four-fold training curves corresponding to TI-ST and the main alternative methods:

$\sigma(\cdot)$ Softmax	O Hadamard product	λ Unsupervised-loss weight	$Cnf(\cdot)$ Confidence Masking
-------------------------	--------------------	------------------------------------	---------------------------------

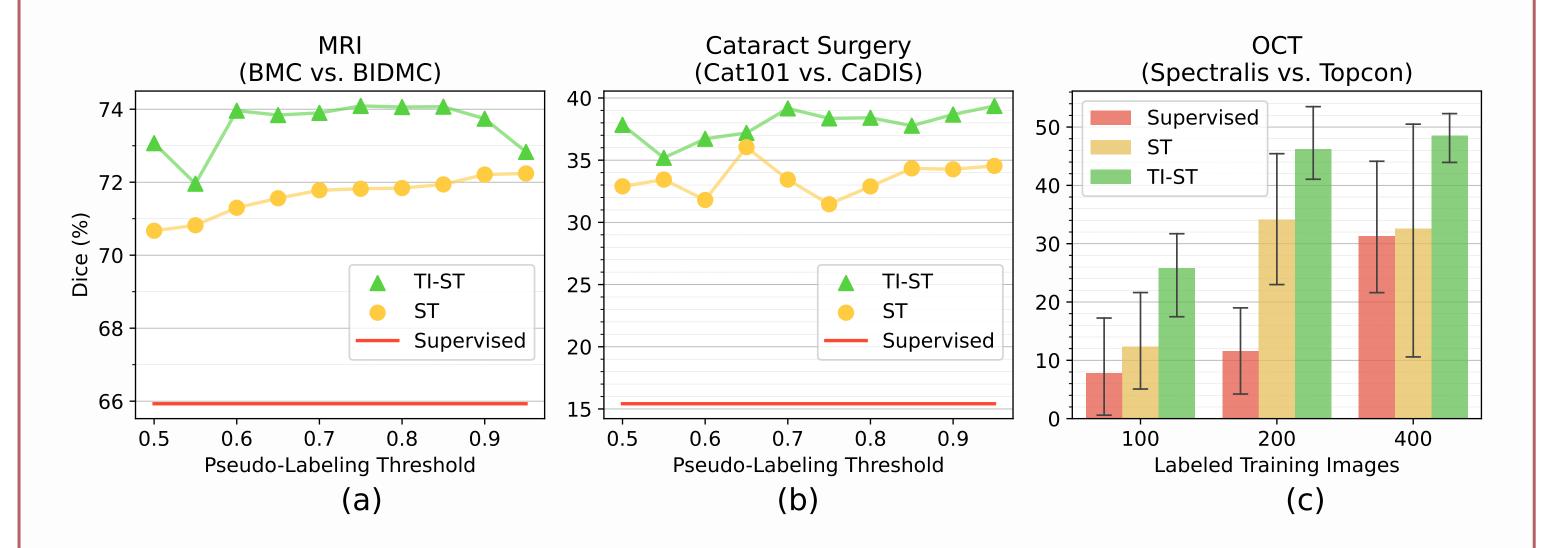
- The goal is to train a model for semantic segmentation in the target dataset using both labeled source and unlabeled target datasets.
- TI-ST assigns pseudo labels to target images during training, but with a selfassessment strategy for reliability estimation.
- TI-ST focuses on retaining highconfidence predictions and filters out transformation-variant predictions.
- The network is simultaneously trained on a batch of labeled and a batch of unlabeled images.
- Images from the target dataset are fed in two versions, the original and nonspatially transformed, and their predictions are computed.
- A confidence-mask ensemble is formed to encode regions of confident predictions that are invariant to transformations.
- The training loss combines supervised and pseudo-supervised losses, with a gradual increase in the weight of pseudo-supervised loss to reinforce training on transformation-invariant highlyconfident predictions.



Ablation Studies

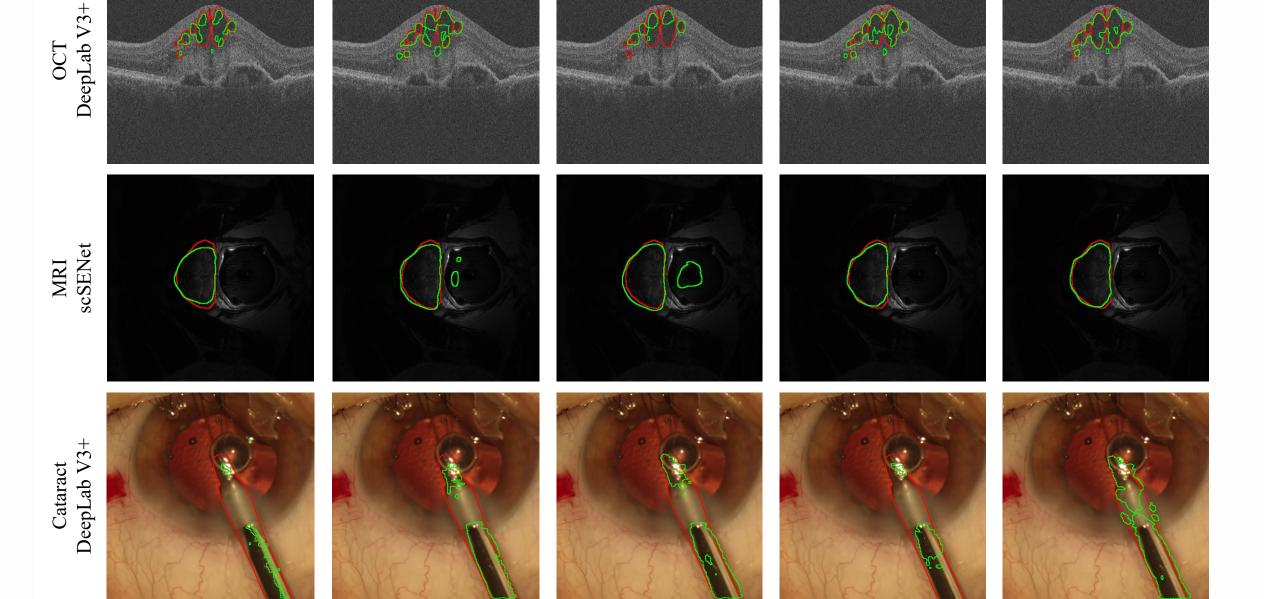
0.6

Ablation studies on the pseudo-labeling threshold and size of the labeled dataset:

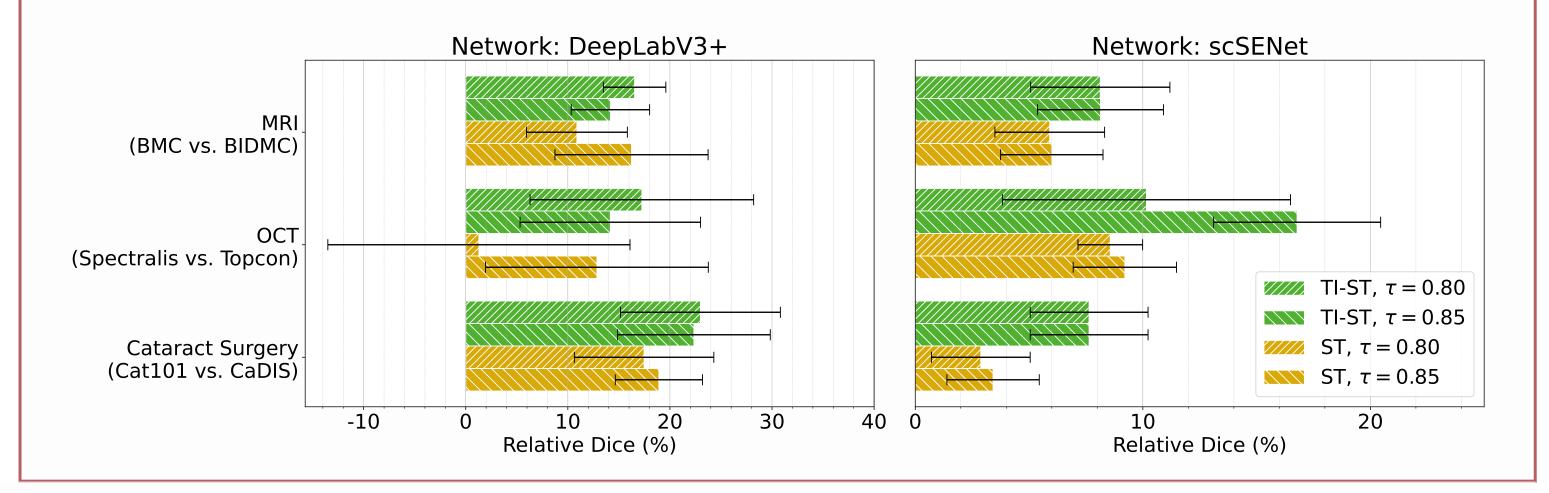


Qualitative Comparisons

Qualitative comparisons between the performance of TI-ST and the best alternatives:



Ablation study on the performance stability of TI-ST vs. ST across the different experimental segmentation tasks:



This work was funded by Haag-Streit Foundation, Switzerland.