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Abstract
• Leveraging unlabelled data is crucial for addressing distribution gaps in diverse image

datasets.

• Self-training techniques using pseudo-labels are highly effective for semi-supervised
domain adaptation.

• Unreliable pseudo labels can hinder self-training’s performance, especially in the case of
significant distribution gaps.

• Identifying uncertain pseudo labels through image transformation variance can improve
ground truth approximations.

• The proposed "transformation-invariant self-training (TI-ST)" filters out unreliable
pseudo-labels, enhancing domain adaptation for medical image segmentation.

Example images from the three adopted cross-device-and-center datasets:

Methodology
Overview of the proposed semi-supervised domain adaptation framework based on
transformation-invariant self-training (Ignored pseudo-labels during unsupervised loss compu-
tation are shown in turquoise):
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• The goal is to train a model for seman-
tic segmentation in the target dataset
using both labeled source and unlabeled
target datasets.

• TI-ST assigns pseudo labels to target
images during training, but with a self-
assessment strategy for reliability esti-
mation.

• TI-ST focuses on retaining high-
confidence predictions and filters out
transformation-variant predictions.

• The network is simultaneously trained
on a batch of labeled and a batch of
unlabeled images.

• Images from the target dataset are fed
in two versions, the original and non-
spatially transformed, and their predic-
tions are computed.

• A confidence-mask ensemble is formed
to encode regions of confident predic-
tions that are invariant to transforma-
tions.

• The training loss combines supervised
and pseudo-supervised losses, with
a gradual increase in the weight of
pseudo-supervised loss to reinforce train-
ing on transformation-invariant highly-
confident predictions.

Qualitative Comparisons
Qualitative comparisons between the performance of TI-ST and the best alternatives:
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Quantitative Comparisons
Quantitative comparisons in Dice score (%) among the proposed (TI-ST) and alternative
methods for DeepLabV3+ (DLV3+) and scSENet and the three datasets (Relative Dice
computed over the Supervised baseline. The best results are shown in green):

Modality Cataract Surgery OCT MRI
Avg. Rel.

Network DLV3+ scSENet DLV3+ scSENet DLV3+ scSENet

Supervised 15.42 37.67 22.87 24.08 52.39 65.93 N/A
Π Model 27.55 35.56 1.12 0.00 10.00 6.87 -22.88
TE 33.10 42.32 42.13 39.86 63.41 67.25 11.62
Mean Teacher 11.06 39.54 19.11 4.70 64.82 66.87 -2.04
RL 34.40 45.13 48.73 47.70 60.79 70.20 14.77
CPS 36.24 39.40 47.31 14.71 76.00 68.80 10.68
ST 34.34 41.10 36.84 33.01 68.63 71.97 11.26
MCF 26.97 40.19 40.12 36.52 54.17 50.23 7.46

TI-ST 37.69 45.31 50.93 40.87 66.56 74.07 16.18
(+22.27) (+7.46) (+28.06) (+16.79) (+14.17) (+8.14)

Four-fold training curves corresponding to TI-ST and the main alternative methods:

Ablation Studies
Ablation studies on the pseudo-labeling threshold and size of the labeled dataset:
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Ablation study on the performance stability of TI-ST vs. ST across the different experimental
segmentation tasks:
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